

    
      
          
            
  
Welcome

Welcome to the iRules LX lab

The content contained here leverages a full DevOps CI/CD
pipeline and is sourced from the GitHub repository at https://github.com/f5devcentral/f5-agility-labs-irules/.
Bugs and Requests for enhancements can be made by
opening an Issue within the repository.
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1. Getting Started

Please follow the instructions provided by the instructor to start your
lab and access your jump host.


Note

All work for this lab can be performed via an RDP connection to the Windows
jumphost, or by selecting bigip01 and accessing the system via the TMUI web
interface.




1.1. Lab Topology

The following components have been included in your lab environment:


	1 x F5 BIG-IP VE


	1 x Linux LAMP Webserver


	1 x Windows Jumphost










          

      

      

    

  

    
      
          
            
  
2. Creating and Implementing an LX iRule

In this lab we will learn how to use iRules LX with a basic example to
introduce you to the concepts of iRules LX and their configuration
objects. We will have a web application that has a web form. When we submit the
form, the page will display our POST data. As part of the lab exercise,
we will apply an LX iRule that will convert the form POST data into JSON
and change the Content-Type header.

The practicality of this use case could be when you have some type of
legacy front end service that can only POST data as a standard query
string, but a new back end service takes data as JSON. It would be
pretty impractical to use tradition iRules to perform the translation.
However, this task is trivial for iRules LX because of the power of
Node.js. We will implement an LX iRule that will accomplish this.



	2.1. Lab 1 - Creating and Implementing an LX iRule









          

      

      

    

  

    
      
          
            
  
2.1. Lab 1 - Creating and Implementing an LX iRule


2.1.1. Test and Review the Existing Configuration


Important


	All code snippets are stored on the Windows Server 2016 Jumphost within a folder titled ilxcode.






To start off we have a web application that has a web form that we enter some information into and submit.


	Lets look at the web app at the URL http://10.1.20.20/ilxlab1/ (Lab 1 on bookmarks).


	The response of the POST will show our form data and “Content-Type” header.


	Here is the example of the web form –

[image: image1]



	Go ahead and run your own test of the web app. Observe the “Content-Type” header and POST data values.


	Here is an example of the response to a POST -

[image: image2]








2.1.2. Create the LX Workspace

The first thing we need to do is create an LX Workspace.


	On the BIG-IP, navigate over to the LX workspaces menu in the tab located at
Local Traffic > iRules > LX Workspaces.


	Then select the create button at the top right of the table and name the workspace ilxlab1. You will
now have an empty workspace.







2.1.3. Create the Extension

Next, we create a new extension (the Node.js code that will run). The name of the extension will matter later
because we will call that from our iRules TCL code.


	To create the extension, click the Add Extension button at the bottom of the editor, then give it the name
ilxlab1_ext.


	The various files of the extension will show up. Select the index.js file and you should see a template of
example code in the editor window. Normally you could use this example code as a starting point, but in our
case we should delete all the example code from the window.


	In the Atom editor, locate the file named ilxlab1.js within the ilxcode folder and double click it which
should open it in a text editor.


	Copy and paste this into the index.js file on our BIG-IP.


	Then you will need to save the changes to this file with the Save File button at the bottom of the editor
window.







2.1.4. Create the TCL iRule

Next, we need to create the TCL iRule that will call our Node.js code.


	Click the button Add iRule at the bottom of the editor window


	Name the iRule json_post and don’t check the box to include example code (we don’t need the example code for this lab).


	In the Atom editor, locate the file named within the ilxcode folder called ilxlab1.tcl.


	Copy and paste the contents into the json_post iRule file.


	Then you will need to save the changes to this file with the Save File button at the bottom of the editor window.







2.1.5. Create the LX Plugin


	Now that we have our code in a workspace, you will need to navigate over to the LX Plugins menu in the tab
located at Local Traffic > iRules > LX Plugins


	Click the Create button, name the plugin ilxlab1_pl


	Select the ilxlab1 workspace and click Finished. This makes the Node.js code active.







2.1.6. Apply the LX iRule to the Virtual Server

Now that we have our Node.js code running, we can put it to use. In order to use the code from the plugin we must assign the TCL iRule to a virtual server.


	Just so we can be familiar with it (but it is not required), we will look for the TCL iRule in the Local Traffic > iRules > iRules List menu.


	You will find the iRule that we created in the workspace located there with a Partition/Path that has the same name as our plugin.

[image: image3]



	You wont be able to make changes from here. This is the same behavior as an iApp with strict updates enabled.


	Now navigate over to our virtual server list, click the Edit button (under the resources column) for
the virtual ilxlab1_vs and select the Manage button for iRules.


	If you scroll to the bottom of the available iRules list, you should see the iRule from our plugin.

[image: image4]



	Move this iRule to the over to the enabled section and click finished.







2.1.7. Testing the LX iRule


	Now let’s navigate to the second tab on the browser with the web page of our app.


	Go back to the web form and submit the information again. You will see now that the data has been converted to
JSON and the Content-Type header has been changed.

[image: image5]





As you can see, with iRules LX we can implement solutions with very few lines of code. If we wanted to accomplish
the same goal in TCL alone, it would most likely take several hundred lines of code.




2.1.8. Workspace Package Management

Lastly, we will show package management for LX workspaces. While it is fairly simple to move TCL iRules from a
dev/test environment to production because it is a single file, iRules LX can have an almost unlimited number of
files depending on how many NPM modules a solution needs. Therefore, workspaces have been given the ability to
export and import packages as a tgz file to have a more convenient method of transporting iRules LX code. In this
exercise, we will export our package and import it back into the same device (but normally import would happen on
a separate BIG-IP).


2.1.8.1. Export/Import a Workspace


	Go to the LX Workspaces list, check the box of our ilxlab1 workspace and click the Export button
below the list. This will save the file to the user’s Downloads folder.


	Now click the Import button on the top right hand corner of the workspace list.


	On the next window give the imported workspace the name of ilxlab1_restore


	select the option Archive File, and use the Choose File button to find the tgz file in the user’s
Downloads folder.


	When you click the Import button you will be taken back to the workspace list and you should see the
imported workspace now. Feel free to navigate into the imported workspace.





2.1.8.1.1. You have concluded lab exercise #1











          

      

      

    

  

    
      
          
            
  
3. Asynchronous Programming

In this lab we will demonstrate the concept of asynchronous programing
with a LX iRule that will do queries to a MySQL database. For this
exercise, we will be using the file ilxlab3_steps.js to cut and
paste code into the BIG-IP.



	3.1. Lab 1 - Asynchronous Programming









          

      

      

    

  

    
      
          
            
  
3.1. Lab 1 - Asynchronous Programming


3.1.1. Test and Review the Existing Configuration

In this lab we will be working with the virtual server (10.1.20.22) &
workspace named ilxlab3. The plugin and TCL iRule are already assigned
to the virtual server. To start off we have a web application that
displays a list of users in a database. This web app is configured on
our BIG-IP at the URL http://10.1.20.22/.




3.1.2. SQL Database Lookup

In this lab we are simply going to view some log statements into the
Node.js and look at the order they appear in the log file.


	First we will review the sql query method in our extension code highlighted below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	// Add a method
ilx.addMethod('get_users', function(req, res) {
  // Perform the query from pool
  sqlPool.query(
    'SELECT id, name, grp FROM users_db.users ORDER BY id;',
    function(err, rows) {
      if (err) {
        // MySQL query failed for some reason, send a 2 back to TCK
        console.error('Error with query: ', err.message);
        return res.reply(2);
      }

      // Check array length from sql
      if (rows.length)
        res.reply([0, rows]);
      else
        res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching records
    }
  );
});







You will notice that the function has 2 arguments, the first being the
text of the actual query. Because this method is asynchronous, the
second argument is the callback function that will get executed when the
query answer is received by Node.js.



	To demonstrate asynchronous behavior, we will put logging statements
before and after the query method as such:

Code Step 1






	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	// Add a method
ilx.addMethod('get_users', function(req, res) {
  // Perform the query from pool
  console.log('Starting SQL query');
  sqlPool.query(
    'SELECT id, name, grp FROM users_db.users ORDER BY id;',
    function(err, rows) {
      if (err) {
        // MySQL query failed for some reason, send a 2 back to TCK
        console.error('Error with query: ', err.message);
        return res.reply(2);
      }
      console.log('There are', rows.length,'records in the DB.');

      // Check array length from sql
      if (rows.length)
        res.reply([0, rows]);
      else
        res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching records
    }
  );
  console.log('SQL query finished.');
});










Make sure to use the TMSH plugin restart command after you reload the
workspace.


	Now tail the log contents of the log file with the following
BASH command and then refresh the ilxlab3 web page:

# tail -f /var/log/ilx/Common.ilxlab3_pl.mysql



	What do you notice about the order of the log statements?


	Now let’s make the following changes to the node.js as seen below.





Code Step 2

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	// Add a method
ilx.addMethod('get_users', function(req, res) {
  // Perform the query from pool
  console.log('Starting SQL query');
  sqlPool.query(
    'SELECT id, name, grp FROM users_db.users ORDER BY id;',
    function(err, rows) {
      if (err) {
        // MySQL query failed for some reason, send a 2 back to TCK
        console.error('Error with query: ', err.message);
        return res.reply(2);
      }
      console.log('There are', rows.length,'records in the DB.');

      // Check array length from sql
      if (rows.length)
        res.reply([0, rows]);
      else
        res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching records
      console.log('SQL query is really finished.');
    }
  );
  console.log('Function call is finished.');
});











	Use the TMSH plugin restart command after you reload the workspace. Now
tail the log contents of the log file again and then refresh the ilxlab3
web page. You will see that they are in the right order. The callback
function is executed much later because I/O responses take much longer.

But you might ask, how much later is the callback function executing?



	To answer that question, lets add some more code:





Code Step 3

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	// Add a method
ilx.addMethod('get_users', function(req, res) {
  // Perform the query from pool
  console.log('Starting SQL query');
  var start = Date.now();
  sqlPool.query(
    'SELECT id, name, grp FROM users_db.users ORDER BY id;',
    function(err, rows) {
      if (err) {
        // MySQL query failed for some reason, send a 2 back to TCK
        console.error('Error with query: ', err.message);
        return res.reply(2);
      }
      console.log('There are', rows.length,'records in the DB.');

      // Check array length from sql
      if (rows.length)
        res.reply([0, rows]);
      else
        res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching records
      console.log('SQL query is really finished, time:', Date.now() - start, 'msec');
    }
  );

  console.log('Function call is finished.');
});











	Use the TMSH plugin restart command after you reload the workspace. Now
tail the log contents of the log file again and then refresh the ilxlab3
web page. Most likely, you are seeing that the time logged is in the
order of tens of milliseconds. As you saw from the I/O time table in the
presentation, this is an eternity compared to reads from local memory.










          

      

      

    

  

    
      
          
            
  
4. iRules LX Streaming

In this lab exercise, you will learn how to create LX plugins that can be
use in streaming or HTTP mode. In the interest of time, we will taking
existing workspaces then and take the code to a full working configuration
on a virtual server. We will be using the virtual server ilxlab4_stream_vs
(10.0.0.23).



	4.1. Lab 1 - iRules LX Streaming









          

      

      

    

  

    
      
          
            
  
4.1. Lab 1 - iRules LX Streaming


4.1.1. Creating and Implementing a Streaming LX Plugin

In this lab we will be loading an LX plugin in streaming mode. To keep
the lab simple, we will only be loading a plugin that will print the
client data to hexdump format in the log files.


4.1.1.1. Review the LX Workspace and Install NPM package

The first thing we need to do is view the LX Workspace. On the desktop,
navigate over to the LX workspaces menu in the tab located at Local
Traffic > iRules > LX Workspaces. Then click the workspace named
ilxlab4_stream. You should see an extension named hexdump, then click
on the index.js file. Also, we should note that you will not see a TCL
rule in the workspace.

Just for reference, here is the Node.js code below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	'use strict';
// Hexdump all client data to stdout on L4 virtual server
var f5 = require('f5-nodejs');
var plugin = new f5.ILXPlugin();
var hexy = require('hexy');

// Register a listener for the client ILXPlugin "connect" event
plugin.on('connect', function(flow) {
  // Register a listener for the ILXStream "data" event
  flow.client.on('data', function (data) {
    console.log(hexy.hexy(data)); //Print the client data to STDOUT
    flow.server.write(data);  //Pass the client data to the server stream
  })

  // Create event listeners for error events
  flow.client.on('error', function(errorText) {
    console.log('client error event: ' + errorText);
  });
  flow.server.on('error', function(errorText) {
    console.log('server error event: ' + errorText);
  });
  flow.on('error', function(errorText) {
    console.log('flow error event: ' + errorText);
  });
});

// Tell TMM not to send data from server to Node
var options = new f5.ILXPluginOptions();
options.handleServerData = false;
plugin.start(options); //Start the plugin in streaming mode







As you can see from the code above we are loading the hexy package for
doing the hexdumps of the buffer chunk. Therefore, we need to install
this package into the workspace.


	To do this you will need to SSH to the BIG-IP and execute the following commands from the BASH prompt:

# cd /var/ilx/workspaces/Common/ilxlab4_stream/extensions/hexdump/
# npm install --save hexy












4.1.1.2. Create the LX Plugin


	With our code already in a workspace, you will need to navigate over to
the LX Plugins menu in the tab located at Local Traffic > iRules > LX
Plugins. Click the Create button, name the plugin
ilxlab4_stream_pl, select the ilxlab4_stream workspace and click
finish to save the changes.


	We still need to configure a few more things so once you are back to the
LX Plugin list, click on the ilxlab4_stream_pl plugin and then click
on the hexdump extension. Change the following settings:








	Setting

	New Value

	Reason





	Concurrency Mode

	Single

	Keep logs for all connections in a single file.



	iRules LX Logging

	Checked

	Will make extension send logs to dedicated file.













4.1.1.3. Create the iRules LX Profile

Since iRules LX Streaming does not require the use of TCL iRules, we
need a method to associate an LX Plugin to a virtual server. That is
done with an iRules LX profile.


	To create a new iRules LX profile, navigate to the menu Local Traffic > Profiles > Other > iRules LX and
click the + sign.


	Name the new profile ilxlab4_stream_profile, select the
ilxlab4_stream_pl LX Plugin and click finish to save the changes.







4.1.1.4. Assign the iRules LX Profile to Virtual Servers

Now we need to attach our profile to a virtual server.


	Go into the virtual server ilxlab4_stream_vs main configuration “properties”
window (not the resources tab), then expand the Configuration menu
to the advanced setting and you will see the iRules LX Profile setting
as shown here:

[image: image18]



	Select the ilxlab4_stream _profile then click update at the bottom
to save the changes.







4.1.1.5. Test the ILX Streaming Plugin

Now we should be able to see the hexdumps in the log file. First, in an
SSH session with the BIG-IP, tail the log file of the plugin with the
following command:

# tail -f  /var/log/ilx/Common/ilxlab4_stream_pl.hexdump


	Then refresh the page in the browser (URL http://10.0.0.23/ilxlab4stream)
and you should see output like this in the SSH terminal:

[image: image19]










4.1.2. Create and Implement an HTTP server LX Plugin

In this lab exercise, we will use the LX plugin as an HTTP server. The
virtual server that we will use this LX Plugin is the
ilxlab4_http_vs (10.0.0.24) virtual server which does not have a pool attached
to it. This VS does not have an HTTP profile associated with it as use
of the iRules LX HTTP server requires this configuration.


4.1.2.1. Review the LX Workspace


	Go to the LX workspace named ilxlab4_http, click on the extension
folder named http_server and click on the index.js file. You should
see code that looks like this:

 'use strict';
// Use iRules LX as simple HTTP server
var f5 = require('f5-nodejs');

// Create the HTTP request callback function
function httpRequestCallback(req, res) {
  var msg =  '<html><body><h1>ILX HTTP Server</h1>';
  msg += '<p>Welcome client "' + req.client.remoteAddress + '". ';
  msg += 'Your HTTP method is ' + req.method + '.</p>';
  msg += '</body></html>';
  // Set HTTP respond, send reply and close connection.
  res.writeHead(200, {'Content-Type': 'text/html'});
  res.end(msg);
}

var plugin = new f5.ILXPlugin();
plugin.startHttpServer(httpRequestCallback);












4.1.2.2. Create the LX Plugin, Profile and Attach to Virtual Server

With our code already in a workspace, all we need to do is create our LX
Plugin and iRules LX profile, and attach the profile to the virtual
server.


	Name your LX Plugin ilxlab4_http_pl. Create the iRules LX
profile with the name of ilxlab4_http_profile and attach it to the
ilxlab4_http_vs virtual server.







4.1.2.3. Test the ILX HTTP Plugin


	In your web browser’s 2nd tab type in the URL http://10.0.0.24.
You should see a web page like this –

[image: image20]
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Introduction to iRules LX

In this lab we will learn how to use iRules LX with a basic example. We
will have a web application that has a web form. When submitting the form, the
page will display our POST data. As part of the lab exercise, we will
apply an LX iRule that will convert the form POST data into JSON and
change the Content-Type header.

Using Your Lab Environment

Connect to the Windows Jumpbox via RDP (Instructor will provide credentials)

How to Access the Labs

You will receive instructions from your proctor on how to access the
workstation in the lab.  On this workstation, you will have the
following applications –


	Atom Editor – For viewing lab code with syntax highlighting. When you open up Atom, you will
see a list of files that will be used in these labs.


	Chrome Web Browser – For testing the applications we create and BIG-IP management access.
Links are bookmarked just below the address bar.


	Putty SSH Client – For accessing the BASH and TMSH command line of the BIG-IP. The BIG-IP
properties have been saved to the session labeled BIG-IP.






	2. Creating and Implementing an LX iRule

	3. Asynchronous Programming

	4. iRules LX Streaming
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;; global options: +cmd

i; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22104
;; flags: qr rd ra; QUERY: 1, ANSWER: 11, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
f5student@xjumpbox:~$ [
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f5student@xjumpbox:~$ curl -k -H "X-Forwarded-For: 5.16.0.1" http://hackazon. f5d
lemo. com | grep -i ?type=
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F5student@xjumpbox:~$ curl -k -H "X-Forwarded-For: 5.16.0.1" http://hackazon.f5d|
lemo. com | grep -i ?type=

% Total % Received % Xferd Average Speed ~Time  Time Time Current
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f5studentexjumpbox:~$ dig f5.com @10.1.10.153 ANY +noall +comments,
;i Truncated, retrying in TCP mode

; <<>> DiG 9.10.3-P4-Ubuntu <<>> f5.com @10.1.10.153 ANY +noall +comments
;; global options: +cmd

;3 Got answer:

;i ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15365

;: flags: qr rd ra; QUERY: 1, ANSWER: 12, AUTHORITY: 4, ADDITIONAL: 1
3 OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096
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