

Welcome

Welcome to the iRules LX lab

The content contained here leverages a full DevOps CI/CD
pipeline and is sourced from the GitHub repository at https://github.com/f5devcentral/f5-agility-labs-irules/.
Bugs and Requests for enhancements can be made by
opening an Issue within the repository.

Contents:

	1. Getting Started
	1.1. Lab Topology

	2. Creating and Implementing an LX iRule
	2.1. Lab 1 - Creating and Implementing an LX iRule

	3. Asynchronous Programming
	3.1. Lab 1 - Asynchronous Programming

	4. iRules LX Streaming
	4.1. Lab 1 - iRules LX Streaming

1. Getting Started

Please follow the instructions provided by the instructor to start your
lab and access your jump host.

Note

All work for this lab can be performed via an RDP connection to the Windows
jumphost, or by selecting bigip01 and accessing the system via the TMUI web
interface.

1.1. Lab Topology

The following components have been included in your lab environment:

	1 x F5 BIG-IP VE

	1 x Linux LAMP Webserver

	1 x Windows Jumphost

2. Creating and Implementing an LX iRule

In this lab we will learn how to use iRules LX with a basic example to
introduce you to the concepts of iRules LX and their configuration
objects. We will have a web application that has a web form. When we submit the
form, the page will display our POST data. As part of the lab exercise,
we will apply an LX iRule that will convert the form POST data into JSON
and change the Content-Type header.

The practicality of this use case could be when you have some type of
legacy front end service that can only POST data as a standard query
string, but a new back end service takes data as JSON. It would be
pretty impractical to use tradition iRules to perform the translation.
However, this task is trivial for iRules LX because of the power of
Node.js. We will implement an LX iRule that will accomplish this.

	2.1. Lab 1 - Creating and Implementing an LX iRule

2.1. Lab 1 - Creating and Implementing an LX iRule

2.1.1. Test and Review the Existing Configuration

Important

	All code snippets are stored on the Windows Server 2016 Jumphost within a folder titled ilxcode.

To start off we have a web application that has a web form that we enter some information into and submit.

	Lets look at the web app at the URL http://10.1.20.20/ilxlab1/ (Lab 1 on bookmarks).

	The response of the POST will show our form data and “Content-Type” header.

	Here is the example of the web form –

[image: image1]

	Go ahead and run your own test of the web app. Observe the “Content-Type” header and POST data values.

	Here is an example of the response to a POST -

[image: image2]

2.1.2. Create the LX Workspace

The first thing we need to do is create an LX Workspace.

	On the BIG-IP, navigate over to the LX workspaces menu in the tab located at
Local Traffic > iRules > LX Workspaces.

	Then select the create button at the top right of the table and name the workspace ilxlab1. You will
now have an empty workspace.

2.1.3. Create the Extension

Next, we create a new extension (the Node.js code that will run). The name of the extension will matter later
because we will call that from our iRules TCL code.

	To create the extension, click the Add Extension button at the bottom of the editor, then give it the name
ilxlab1_ext.

	The various files of the extension will show up. Select the index.js file and you should see a template of
example code in the editor window. Normally you could use this example code as a starting point, but in our
case we should delete all the example code from the window.

	In the Atom editor, locate the file named ilxlab1.js within the ilxcode folder and double click it which
should open it in a text editor.

	Copy and paste this into the index.js file on our BIG-IP.

	Then you will need to save the changes to this file with the Save File button at the bottom of the editor
window.

2.1.4. Create the TCL iRule

Next, we need to create the TCL iRule that will call our Node.js code.

	Click the button Add iRule at the bottom of the editor window

	Name the iRule json_post and don’t check the box to include example code (we don’t need the example code for this lab).

	In the Atom editor, locate the file named within the ilxcode folder called ilxlab1.tcl.

	Copy and paste the contents into the json_post iRule file.

	Then you will need to save the changes to this file with the Save File button at the bottom of the editor window.

2.1.5. Create the LX Plugin

	Now that we have our code in a workspace, you will need to navigate over to the LX Plugins menu in the tab
located at Local Traffic > iRules > LX Plugins

	Click the Create button, name the plugin ilxlab1_pl

	Select the ilxlab1 workspace and click Finished. This makes the Node.js code active.

2.1.6. Apply the LX iRule to the Virtual Server

Now that we have our Node.js code running, we can put it to use. In order to use the code from the plugin we must assign the TCL iRule to a virtual server.

	Just so we can be familiar with it (but it is not required), we will look for the TCL iRule in the Local Traffic > iRules > iRules List menu.

	You will find the iRule that we created in the workspace located there with a Partition/Path that has the same name as our plugin.

[image: image3]

	You wont be able to make changes from here. This is the same behavior as an iApp with strict updates enabled.

	Now navigate over to our virtual server list, click the Edit button (under the resources column) for
the virtual ilxlab1_vs and select the Manage button for iRules.

	If you scroll to the bottom of the available iRules list, you should see the iRule from our plugin.

[image: image4]

	Move this iRule to the over to the enabled section and click finished.

2.1.7. Testing the LX iRule

	Now let’s navigate to the second tab on the browser with the web page of our app.

	Go back to the web form and submit the information again. You will see now that the data has been converted to
JSON and the Content-Type header has been changed.

[image: image5]

As you can see, with iRules LX we can implement solutions with very few lines of code. If we wanted to accomplish
the same goal in TCL alone, it would most likely take several hundred lines of code.

2.1.8. Workspace Package Management

Lastly, we will show package management for LX workspaces. While it is fairly simple to move TCL iRules from a
dev/test environment to production because it is a single file, iRules LX can have an almost unlimited number of
files depending on how many NPM modules a solution needs. Therefore, workspaces have been given the ability to
export and import packages as a tgz file to have a more convenient method of transporting iRules LX code. In this
exercise, we will export our package and import it back into the same device (but normally import would happen on
a separate BIG-IP).

2.1.8.1. Export/Import a Workspace

	Go to the LX Workspaces list, check the box of our ilxlab1 workspace and click the Export button
below the list. This will save the file to the user’s Downloads folder.

	Now click the Import button on the top right hand corner of the workspace list.

	On the next window give the imported workspace the name of ilxlab1_restore

	select the option Archive File, and use the Choose File button to find the tgz file in the user’s
Downloads folder.

	When you click the Import button you will be taken back to the workspace list and you should see the
imported workspace now. Feel free to navigate into the imported workspace.

2.1.8.1.1. You have concluded lab exercise #1

3. Asynchronous Programming

In this lab we will demonstrate the concept of asynchronous programing
with a LX iRule that will do queries to a MySQL database. For this
exercise, we will be using the file ilxlab3_steps.js to cut and
paste code into the BIG-IP.

	3.1. Lab 1 - Asynchronous Programming

3.1. Lab 1 - Asynchronous Programming

3.1.1. Test and Review the Existing Configuration

In this lab we will be working with the virtual server (10.1.20.22) &
workspace named ilxlab3. The plugin and TCL iRule are already assigned
to the virtual server. To start off we have a web application that
displays a list of users in a database. This web app is configured on
our BIG-IP at the URL http://10.1.20.22/.

3.1.2. SQL Database Lookup

In this lab we are simply going to view some log statements into the
Node.js and look at the order they appear in the log file.

	First we will review the sql query method in our extension code highlighted below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	// Add a method
ilx.addMethod('get_users', function(req, res) {
 // Perform the query from pool
 sqlPool.query(
 'SELECT id, name, grp FROM users_db.users ORDER BY id;',
 function(err, rows) {
 if (err) {
 // MySQL query failed for some reason, send a 2 back to TCK
 console.error('Error with query: ', err.message);
 return res.reply(2);
 }

 // Check array length from sql
 if (rows.length)
 res.reply([0, rows]);
 else
 res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching records
 }
);
});

You will notice that the function has 2 arguments, the first being the
text of the actual query. Because this method is asynchronous, the
second argument is the callback function that will get executed when the
query answer is received by Node.js.

	To demonstrate asynchronous behavior, we will put logging statements
before and after the query method as such:

Code Step 1

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	// Add a method
ilx.addMethod('get_users', function(req, res) {
 // Perform the query from pool
 console.log('Starting SQL query');
 sqlPool.query(
 'SELECT id, name, grp FROM users_db.users ORDER BY id;',
 function(err, rows) {
 if (err) {
 // MySQL query failed for some reason, send a 2 back to TCK
 console.error('Error with query: ', err.message);
 return res.reply(2);
 }
 console.log('There are', rows.length,'records in the DB.');

 // Check array length from sql
 if (rows.length)
 res.reply([0, rows]);
 else
 res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching records
 }
);
 console.log('SQL query finished.');
});

Make sure to use the TMSH plugin restart command after you reload the
workspace.

	Now tail the log contents of the log file with the following
BASH command and then refresh the ilxlab3 web page:

tail -f /var/log/ilx/Common.ilxlab3_pl.mysql

	What do you notice about the order of the log statements?

	Now let’s make the following changes to the node.js as seen below.

Code Step 2

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	// Add a method
ilx.addMethod('get_users', function(req, res) {
 // Perform the query from pool
 console.log('Starting SQL query');
 sqlPool.query(
 'SELECT id, name, grp FROM users_db.users ORDER BY id;',
 function(err, rows) {
 if (err) {
 // MySQL query failed for some reason, send a 2 back to TCK
 console.error('Error with query: ', err.message);
 return res.reply(2);
 }
 console.log('There are', rows.length,'records in the DB.');

 // Check array length from sql
 if (rows.length)
 res.reply([0, rows]);
 else
 res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching records
 console.log('SQL query is really finished.');
 }
);
 console.log('Function call is finished.');
});

	Use the TMSH plugin restart command after you reload the workspace. Now
tail the log contents of the log file again and then refresh the ilxlab3
web page. You will see that they are in the right order. The callback
function is executed much later because I/O responses take much longer.

But you might ask, how much later is the callback function executing?

	To answer that question, lets add some more code:

Code Step 3

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	// Add a method
ilx.addMethod('get_users', function(req, res) {
 // Perform the query from pool
 console.log('Starting SQL query');
 var start = Date.now();
 sqlPool.query(
 'SELECT id, name, grp FROM users_db.users ORDER BY id;',
 function(err, rows) {
 if (err) {
 // MySQL query failed for some reason, send a 2 back to TCK
 console.error('Error with query: ', err.message);
 return res.reply(2);
 }
 console.log('There are', rows.length,'records in the DB.');

 // Check array length from sql
 if (rows.length)
 res.reply([0, rows]);
 else
 res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching records
 console.log('SQL query is really finished, time:', Date.now() - start, 'msec');
 }
);

 console.log('Function call is finished.');
});

	Use the TMSH plugin restart command after you reload the workspace. Now
tail the log contents of the log file again and then refresh the ilxlab3
web page. Most likely, you are seeing that the time logged is in the
order of tens of milliseconds. As you saw from the I/O time table in the
presentation, this is an eternity compared to reads from local memory.

4. iRules LX Streaming

In this lab exercise, you will learn how to create LX plugins that can be
use in streaming or HTTP mode. In the interest of time, we will taking
existing workspaces then and take the code to a full working configuration
on a virtual server. We will be using the virtual server ilxlab4_stream_vs
(10.0.0.23).

	4.1. Lab 1 - iRules LX Streaming

4.1. Lab 1 - iRules LX Streaming

4.1.1. Creating and Implementing a Streaming LX Plugin

In this lab we will be loading an LX plugin in streaming mode. To keep
the lab simple, we will only be loading a plugin that will print the
client data to hexdump format in the log files.

4.1.1.1. Review the LX Workspace and Install NPM package

The first thing we need to do is view the LX Workspace. On the desktop,
navigate over to the LX workspaces menu in the tab located at Local
Traffic > iRules > LX Workspaces. Then click the workspace named
ilxlab4_stream. You should see an extension named hexdump, then click
on the index.js file. Also, we should note that you will not see a TCL
rule in the workspace.

Just for reference, here is the Node.js code below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	'use strict';
// Hexdump all client data to stdout on L4 virtual server
var f5 = require('f5-nodejs');
var plugin = new f5.ILXPlugin();
var hexy = require('hexy');

// Register a listener for the client ILXPlugin "connect" event
plugin.on('connect', function(flow) {
 // Register a listener for the ILXStream "data" event
 flow.client.on('data', function (data) {
 console.log(hexy.hexy(data)); //Print the client data to STDOUT
 flow.server.write(data); //Pass the client data to the server stream
 })

 // Create event listeners for error events
 flow.client.on('error', function(errorText) {
 console.log('client error event: ' + errorText);
 });
 flow.server.on('error', function(errorText) {
 console.log('server error event: ' + errorText);
 });
 flow.on('error', function(errorText) {
 console.log('flow error event: ' + errorText);
 });
});

// Tell TMM not to send data from server to Node
var options = new f5.ILXPluginOptions();
options.handleServerData = false;
plugin.start(options); //Start the plugin in streaming mode

As you can see from the code above we are loading the hexy package for
doing the hexdumps of the buffer chunk. Therefore, we need to install
this package into the workspace.

	To do this you will need to SSH to the BIG-IP and execute the following commands from the BASH prompt:

cd /var/ilx/workspaces/Common/ilxlab4_stream/extensions/hexdump/
npm install --save hexy

4.1.1.2. Create the LX Plugin

	With our code already in a workspace, you will need to navigate over to
the LX Plugins menu in the tab located at Local Traffic > iRules > LX
Plugins. Click the Create button, name the plugin
ilxlab4_stream_pl, select the ilxlab4_stream workspace and click
finish to save the changes.

	We still need to configure a few more things so once you are back to the
LX Plugin list, click on the ilxlab4_stream_pl plugin and then click
on the hexdump extension. Change the following settings:

	Setting

	New Value

	Reason

	Concurrency Mode

	Single

	Keep logs for all connections in a single file.

	iRules LX Logging

	Checked

	Will make extension send logs to dedicated file.

4.1.1.3. Create the iRules LX Profile

Since iRules LX Streaming does not require the use of TCL iRules, we
need a method to associate an LX Plugin to a virtual server. That is
done with an iRules LX profile.

	To create a new iRules LX profile, navigate to the menu Local Traffic > Profiles > Other > iRules LX and
click the + sign.

	Name the new profile ilxlab4_stream_profile, select the
ilxlab4_stream_pl LX Plugin and click finish to save the changes.

4.1.1.4. Assign the iRules LX Profile to Virtual Servers

Now we need to attach our profile to a virtual server.

	Go into the virtual server ilxlab4_stream_vs main configuration “properties”
window (not the resources tab), then expand the Configuration menu
to the advanced setting and you will see the iRules LX Profile setting
as shown here:

[image: image18]

	Select the ilxlab4_stream _profile then click update at the bottom
to save the changes.

4.1.1.5. Test the ILX Streaming Plugin

Now we should be able to see the hexdumps in the log file. First, in an
SSH session with the BIG-IP, tail the log file of the plugin with the
following command:

tail -f /var/log/ilx/Common/ilxlab4_stream_pl.hexdump

	Then refresh the page in the browser (URL http://10.0.0.23/ilxlab4stream)
and you should see output like this in the SSH terminal:

[image: image19]

4.1.2. Create and Implement an HTTP server LX Plugin

In this lab exercise, we will use the LX plugin as an HTTP server. The
virtual server that we will use this LX Plugin is the
ilxlab4_http_vs (10.0.0.24) virtual server which does not have a pool attached
to it. This VS does not have an HTTP profile associated with it as use
of the iRules LX HTTP server requires this configuration.

4.1.2.1. Review the LX Workspace

	Go to the LX workspace named ilxlab4_http, click on the extension
folder named http_server and click on the index.js file. You should
see code that looks like this:

 'use strict';
// Use iRules LX as simple HTTP server
var f5 = require('f5-nodejs');

// Create the HTTP request callback function
function httpRequestCallback(req, res) {
 var msg = '<html><body><h1>ILX HTTP Server</h1>';
 msg += '<p>Welcome client "' + req.client.remoteAddress + '". ';
 msg += 'Your HTTP method is ' + req.method + '.</p>';
 msg += '</body></html>';
 // Set HTTP respond, send reply and close connection.
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(msg);
}

var plugin = new f5.ILXPlugin();
plugin.startHttpServer(httpRequestCallback);

4.1.2.2. Create the LX Plugin, Profile and Attach to Virtual Server

With our code already in a workspace, all we need to do is create our LX
Plugin and iRules LX profile, and attach the profile to the virtual
server.

	Name your LX Plugin ilxlab4_http_pl. Create the iRules LX
profile with the name of ilxlab4_http_profile and attach it to the
ilxlab4_http_vs virtual server.

4.1.2.3. Test the ILX HTTP Plugin

	In your web browser’s 2nd tab type in the URL http://10.0.0.24.
You should see a web page like this –

[image: image20]

Index

Introduction to iRules LX

In this lab we will learn how to use iRules LX with a basic example. We
will have a web application that has a web form. When submitting the form, the
page will display our POST data. As part of the lab exercise, we will
apply an LX iRule that will convert the form POST data into JSON and
change the Content-Type header.

Using Your Lab Environment

Connect to the Windows Jumpbox via RDP (Instructor will provide credentials)

How to Access the Labs

You will receive instructions from your proctor on how to access the
workstation in the lab. On this workstation, you will have the
following applications –

	Atom Editor – For viewing lab code with syntax highlighting. When you open up Atom, you will
see a list of files that will be used in these labs.

	Chrome Web Browser – For testing the applications we create and BIG-IP management access.
Links are bookmarked just below the address bar.

	Putty SSH Client – For accessing the BASH and TMSH command line of the BIG-IP. The BIG-IP
properties have been saved to the session labeled BIG-IP.

	2. Creating and Implementing an LX iRule

	3. Asynchronous Programming

	4. iRules LX Streaming

 _static/class3/image5.png
Resource Management

Enabled Avallable
_sys_hitps_redirect
<< | |Icommoniilxiab1_pl
iRule ison_post
>> | |ICommoniilxiab3_pl
mysal
Up | | Down

_static/class3/image6.png
(® iRules LX POST Data

The Content-Type header is: application/json

This is your POST data:

{"name”: "Eric", "title": "NPI", "randonText": "Some random text'}

© 1998 - 2016 F5 Networks, Inc. All rights reserved.

_static/class3/image3.png
(® iRules LX POST Data

The Content-Type header is: application/x-www-form-urlencoded

This is your POST data:

nane=Ericstitle=NPLSrandonText=Sone+randon+textforsthistlab

© 1998 - 2016 F5 Networks, Inc. All rights reserved.

_static/class3/image4.png
| 11 _sys_aun sacacs [CIFSVerfies foie common |

[e Crsveres s Comwen |

O json_parse None Common/iiab2_pl

Commonjixiab1_pl

O mysal None Common/ixiab3_pi

Add Signature... || Add Checksum

_static/class3/image9.png
Put your JSON text here:

{
"username": "userl",
"password": "password",
z il "nobody@f5.com"
randomtext|

Submit

_static/comment-bright.png

_images/image6.png
(® iRules LX POST Data

The Content-Type header is: application/json

This is your POST data:

{"name”: "Eric", "title": "NPI", "randonText": "Some random text'}

© 1998 - 2016 F5 Networks, Inc. All rights reserved.

_static/class3/image7.png
iRules LX JSON Parser

Put your JSON text here:

{
"username": "userl",
"password": "password",
"email": "nobody@f5.com"
}

Submit

_static/ajax-loader.gif

_static/class3/image8.png
(® iRules LX POST Data

The Content-Type header is: application/json

This is your JSON data:

{
“username": “userl”,
"password": "password",
"email": "nobody@fS.com"
}

© 1998 - 2016 F5 Networks, Inc. All rights reserved.

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/image3.png
(® iRules LX POST Data

The Content-Type header is: application/x-www-form-urlencoded

This is your POST data:

nane=Ericstitle=NPLSrandonText=Sone+randon+textforsthistlab

© 1998 - 2016 F5 Networks, Inc. All rights reserved.

_images/image4.png
| 11 _sys_aun sacacs [CIFSVerfies foie common |

[e Crsveres s Comwen |

O json_parse None Common/iiab2_pl

Commonjixiab1_pl

O mysal None Common/ixiab3_pi

Add Signature... || Add Checksum

_images/image20.png
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

154
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

Q9:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33

pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]

00000000 :

0000001
00008002
0000003
0000004
0000005
0000006

000000701

0000008
0006009
0000004
000600b
000000«
000000d

00000060 :

000600 F
0000010
00000111
0000012
0000013
0000014

000001501

0000016
0006017
0000018
0000019
000001 al

4745
486F
0a55
696¢

: 696

3532
3031
300d
6874
2778
6361

: 2c2a

7074
5553
6570
6970
665
6976

: 6563

310d
696e
7920
474d
6368
3236

: 726F

0d0a

5420
7374
7365
661
7578
230
3031
0a41
6d6c
6874
7469
2f2a
2d4c
2c65
742d
2c20
6374
650d
7572
0249
6365
3230
540d
3a20
3222
6c3a

2f20
3a20
722d
2735
2078
2920
2046
6363
2c61
6d6c
676e
3b71
616e
6e3b
456e
6465
696F
0a55
652d
662d
3a20
3137
0249
572f
0doa
206d

4854
3130
4167
230
3836
4765
6972
6570
7670
2b78
278
3d30
6775
713d
636F
666¢
6e3a
7067
5265
ad6f
4d6f
2032
662d
2235
4361
6178

5450
230
656e
2028
5736
636D
6566
743a
6c69
6d6c
6d6c
2e38
6167
302e
6469
6174
206b
7261
7175
6469
6e2c
323a
4e6F
3931
6368
2d61

2f31
230
743a
5831
343p
672f
6778
2074
6361
2c61
3b71
0doa
653a
350d
6e67
650d
6565
6465
6573
6669
2030
3234
665
3066
652d
6765

2e31
2032
204d
313
2072
3230
235
6578
7469
7076
3d30
4163
2065
0a41
3a20
0a43
702d
2d49
7473
6564
3820
3a30
2d4d
3030
436F
3d30

0doa
300d
6f7a
204c
763a
3130
322e
742f
676e
6c69
239
6365
6e2d
6363
677a
676e
616¢
6e73
3a20
2d53
4d61
3020
6174
302d
6e74
0doa

GET./.HTTP/1.1..
Host:.10.0.0.20.
.User-Agent : .Moz
illa/5.0.(X11;.L
inux.x86_64;.rv:
52.0) .Gecko/2010
0161.Firefox/52.
0..Accept:.text/
html, application
/xhitmlexul, appli
cation/xml;q=0.9
J*/*;0=0.8. .Acce
pt-Language: .en-
US,en;q=0.5. .Acc
ept-Encoding: .gz
ip, .deflate..Con
nection:.keep-al
ive..Upgrade-Ins
ecure-Requests: .
1..If-Modified-S
ince:.Mon,.08.Ma
y.2017.22:24:00.
GHT..Tf-None-Mat
ch:.W/"59107000-
262" .Cache-Cont
rol:.max-age=0. .

_images/image21.png
(€)®100021

ILX HTTP Server

‘Welcome client "10.0.0.10". Your HTTP method is GET.

_images/image5.png
Resource Management

Enabled Avallable
_sys_hitps_redirect
<< | |Icommoniilxiab1_pl
iRule ison_post
>> | |ICommoniilxiab3_pl
mysal
Up | | Down

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome

 		
 Getting Started

 		
 Lab Topology

 		
 Creating and Implementing an LX iRule

 		
 Lab 1 - Creating and Implementing an LX iRule

 		
 Test and Review the Existing Configuration

 		
 Create the LX Workspace

 		
 Create the Extension

 		
 Create the TCL iRule

 		
 Create the LX Plugin

 		
 Apply the LX iRule to the Virtual Server

 		
 Testing the LX iRule

 		
 Workspace Package Management

 		
 Asynchronous Programming

 		
 Lab 1 - Asynchronous Programming

 		
 Test and Review the Existing Configuration

 		
 SQL Database Lookup

 		
 iRules LX Streaming

 		
 Lab 1 - iRules LX Streaming

 		
 Creating and Implementing a Streaming LX Plugin

 		
 Create and Implement an HTTP server LX Plugin

_images/image19.png
Configuration: | Advanced (=

Procoo! Tcr
Protocol Profile (Cliert) p

Protocol Profile (Server) (Use Cliert Profile)
HTTR Frofle Nore

HTTP Proxy Comectprorie. | [Nore

Trac Acoskeraton Profle Nore

FIP prorie o]
RTSP Frofle o]
SocKs Profle o]
Steam profie o Al
Rutes L Prorle Nore

XML protie Nore

aTT N

_static/up-pressed.png

_images/image2.png
(& ILX Lab 1 iRules LX Post Form

Your Name:
Your Title:

Put some random text:

Submit

© 1998 — 2016 F5 Networks, Inc. All rights reserved.

_static/up.png

_static/plus.png

_static/class1/iRulesManage.png
oomony

_static/class2/DNS_AMP_Attack.gif
Hi, I'm IP address 1.2.3.4, and I'm sending a
small “ANY” query for www.example.com

“Open” DNS Resolver

IP Address
Here’s all the info you i 1.2.34

requested...and lots of it!

What the...?!?

_static/class1/Event_Order_HTTPS_v7.png
Packet Filter processing occurs before this first event

RULE_INIT

The TCP::respond command will
prevent further events from

occurring from this point onwards,
FLOW_INIT until the client sends more data (TCP Profile
must be assigned)

The drop, refect, reset and TCP::close
commands will terminate the connection
from this point onwgrds

viL4.1 Occurs only once;

onwards -per TCP connection, on successful three way handshake (3WHS)

per UDP stream’ (which could include a traceroute) with an entry

in the connection table unless;

Occurs per UDP segment if Datagram LB is enabled in the UDP profile

CLIENT ACCEPTED

The HTTPz:disable command will prevent
further HTTP events from occurring when
- @used anywhere from here, for the lifetime
The SSL::disable command will prevent SSL events of the connection, until the HTTP::enable
L @from occurring from this point onwards until the command is used

SSLizenable comman

is used

TCP Idle
Timeout
Reached?

t Won't occur until the TCP::collect command (if used) collects the specified amount

of data or until the TCP::release command is used (if no data length is specified)

CLIENT DATA Occurs when any packet is received (a single HTTP.
request could be comprised of multiple packets)

The SSL:profile command cannot be used
aiter this point unless SSLirenegotiate is

also used
CLIENTSSL The SSL::hold command used here will prevent the
CLIENTHELLO CLIENTSSL_HANDSHAKE occurring until SSLirelease is used

CLIENTSSL
CLIENTCERT

Auth.
Profile Yes: AUTH_RESULT
Applied?

Yes

ood:

Occurs when the handshake is complete
Won't occur until if SSL::hold has been used and SSL:release has not
HTTP::respond and SsLrespond can be used from here (v10.1 onwards)
The SSL:renegotiate command can be used from here

CLIENTSSL.
HANDSHAKE

Bad

SSLIdle
Timeout
Reached?

Yes

No

CLIENTSSL DATA

HTTP is parsed Occurs only once;
-per TCP connection

-per UDP stream’ connection table entry
Occurs per UDP segment if Datagram LB
is enabled in the UDP profile

No
The HTTP::redirect and HTTP::respond
commands will prevent further events from

: If a server-side connection
occurring when used anywhere from here,

exists and the client-side

until the client sends a new request o i
connection times out

Yes
Occurs on every HTTP request

HTTP_REQUEST

HTTP:: commands available

XML_CONTENT_
BASED_ROUTING

XML Profile

Y al
Applied? © «

If the client makes.
further requests the
next event will be
CLIENT_DATA

‘CACHE_RESPONSE

Yes:

No

WA/AAM
Profile Applied
and Matches?

Object in
Cache?

Yes: CACHE REQUEST

No-
No

HTTP Class
Match?

HTTP_CLASS_
SELECTED

HTTP Class

Applied? e

Yes

No (c) Steven Iveson 2014

v0.7
HTTP_CLASS FAILED
Yes Yes STREAM_MATCHED

No-
Won't occur until the HTTP::collect command (if used)

collects the specified amount of data or until the HTTP::release
command is used (if no data length is specified)

Stream
Profile
Applied?

Persistence occurs at this point whether

HTTP_REQUEST DATA

‘ specified in the iRule or applied via a

profile. Cookie persistence cannot be
used if the HTTP::disable command has

Pool
Member
Selected &
Reachable?._

Persistence
Used to
Select?

reselect iRuld

command is used or

Action on Service
Down: Reselect

No
Yes is configured and *
\ 4 reselect limit not

reached
LB _SELECTED LB_FAILED
"I the LB:reselect iRule command is not used or
Doesn'toccurfor Action on Service Down: Reselect is not configured
Performance (Layer) or if the reselect limit is reached
. . Yes
Client Side

Server Side

Pool/

Connection

Member Limit No Idle
Connection Yes- LB_QUEUED ety Timeout
Limit g Reached?

Reached? HTTP:iretry not permitted Exceeded?

Yes:
SERVER CONNECTED
The sSLidisable command
—— will prevent further SSL events

@from occurring from this point

Yes SERVERS! onwards until the SSL::enable No
CLIENTHELLO_SEND command is used
The SSL::profile command cannot be used

SERVERSSL L ———————@:iier this point unless SSLrenegotiate 1+
SERVERHELLO also used

Occurs when the handshake is complete
SERVERSSL_ Won't occur until if SSLizhold has been used and SSL::release has not
HANDSHAKE HTTP::respond and SSL::respond can be used from here (v10.1 onwards)
The SSL::renegotiate command can be used from here

] ¢

SSLIdle
Timeout
Reached?

No

N B

Won't occur until the SSL::collect command (if used)
SERVERSSL_DATA | collects the specified amount of data or until the SSL:release

command s used (if no data length is specified)

HTTP_REQUEST.
RELEASE

I —r

HTTP_REQUEST SEND

Yes

SR AN

SERVER DATA Won't occur until the TCP::collect command (if used) collects the specified amount

of data or until the TCP::release command is used (if no data length is specified)

Server response HTTP is parsed

HTTP_RESPONSE Occurs on every HTTP response
—

WA/AAM
Profile Applied
and Matches?

Unexpired
Object in Cache?

Yes

o CACHE UPDATE

Yes -

Yes: STREAM _MATCHED

HTTP_RESPONSE DATA

HTTP_RESPONSE_CONTINUE

Server Side

Client Side

HTTP_RESPONSE RELEASE

HTTP
Keepalive
Enabled &

Supported?

_static/class1/Event_Order_HTTP_v12.png
Packet Filter processing occurs before this first event

RULE INIT
The TCP::respond command will
prevent further events from .
occurring when used anywhere from here, The drop, reject, reset and TCP::close
FLOW_INIT until the client sends more data (TCP Profile 0mmands will terminate the connection
must be assigned) when used anywherg from here
vila1 Occurs only once;
onwards -per TCP connection, on successful three way handshake (3WHS)
(—@ber UDP 'stream’ (which could include a traceroute) with an entry
in the connection table unless;
CLIENT ACCEPTED Occurs per UDP segment if Datagram LB is enabled in the UDP profile
The HTTP:disable command will prevent
[———————————®urther HTTP cvents from occurring when

used anywhere from here, for the lifetime
of the connection, until the HTTP::enable
command is used

TCP Idle
Timeout

Yes:

Reached?

Won't occur until the TCP::collect command (if used) collects the specified amount
of data or until the TCP::release command is used (if no data length is specified)

Occurs when any packet is received (a single HTTP

CLIENT DATA
request could be comprised of multiple packets)

Request HTTP is parsed

Auth.
Profile

Yes: AUTH_RESULT Bad-

00d:

Applied?

No Occurs only once;
-per TCP connection

Valid HTTP is enabled in the UDP profile

No

-per UDP 'stream’ connection table entry
Occurs per UDP segment if Datagram LB

Beitesy The HTTP::redirect and HTTP::respond

commands will prevent further events from If a server-side co

Yes until the client sends a new request connection times

Occurs on every HTTP request

HTTP:: commands available

XML Profile
Applied?

XML _CONTENT
BASED_ROUTING

Yes: Yes:

If the client mak

No
CLIENT_DATA

WA/AAM
Profile Applied
and Matches?

Object in
Cache?

Yes: CACHE REQUEST

No'
No

HTTP Class
Applied?

HTTP Class

Y
“ Match?

Yes: HTTP_CLASS SELECTED

(c) Steven Iveson 2014
vi2

HTTP_CLASS FAILED

Yest‘ms
N

Won't occur until the HTTP::collect command (if used)
collects the specified amount of data or until the HTTP:release
command is used (if no data length is specified)

Stream
Profile STREAM_MATCHED
Applied?

LIZEAREQUESIEDATA Persistence occurs at this point whether

specified in the iRule or applied via a
profile. Cookie persistence cannot be
used if the HTTP::disable command has

Pool

Member Persistence
No Used to Yes: PERSIST_ DOWN
Selected & ey
Reachable? ect?

If LBzzreselect iRuld
command is used or
Action on Service

occurring when used anywhere from here, exists and the client-side

further requests the
next event will be

CACHE_RESPONSE

nnection

out

es

Down: Reselect No
Yes is configured and
) 4 reselect limit not *
reached
LB_SELECTED J *< LB_FAILED
T the LBzreselect iRule command is not used or

Doesn't occur for Acti
Performance (Layer) o

Client Side
Server Side

n on Service Down: Reselect is not configured
reached

the reselect

Pool/ -
Connection

Member i
Connection Yes: Limit No
Limit Longer

Reached? HTTP::retry not permitted Exceeded?

No

SERVER CONNECTED Yes:

HTTP_REQUEST RELEASE

SR S
HTTP_REQUEST SEND

SR AN

Won't occur until the TCP::
SERVER DATA

of data or until the TCI

ollect command (if used) collects the specified amount

lease command is used (if no data length is specified)

| Server response HTTP s parsed
HTTP_RESPONSE Occurs on every HTTP response

WA/AAM
Profile Applied
and Matches?

Unexpired
Object in Cache?

Yes: No- CACHI

g Yes: -

Yes: Yes: STREAM _MATCHED

No-
Won't occur until the HTTP::collect command (if used)
collects the specified amount of data or until the HTTP::release
command is used (if no data length is specified)

HTTP_RESPONSE DATA

HTTP RESPONSE CONTINUE | 07V occurs f a 100 Continue
response is received from the server

Server Side

Client Side

HTTP_RESPONSE_RELEASE

Idle
Timeout
Reached?

SERVER CLOSED

HTTP
Keepalive

Enabled &
Supported?

_static/class2/DNS_Resolver.gif
DNS Resolver for IP Address Range:
1.1.1.0 - 1.1.1.255

Request from 2.2.2.2

No response at all, because the
requesting IP address is not in range

_static/class2/amplification_attack.gif
Hi, I'm IP address 1.2.3.4, and I'm sending a
small “ANY” query for www.example.com

“Open” DNS Resolver

IP Address
Here’s all the info you i 1.2.34

requested...and lots of it!

What the...?!?

_static/class2/dig_notrunc.png
f5student@xjumpbox:

$ dig f5.com @10.1.10.153 ANY +noall +comments

; <<>> DiG 9.10.3-P4-Ubuntu <<>> f5.com @10.1.10.153 ANY +noall +comments
;; global options: +cmd

i; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22104
;; flags: qr rd ra; QUERY: 1, ANSWER: 11, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
f5student@xjumpbox:~$ [

_static/class2/pbd_baseline_test1.png
Terminal - fSstudent@xjumpbox: ~

File Edit View Terminal T Help

f5student@xjumpbox:~$ curl -k -H "X-Forwarded-For: 5.16.0.1" http://hackazon. f5d
lemo. com | grep -i ?type=

% Total % Received % Xferd Average Speed ~Time Time Time Current
Dload Upload Total Spent Left Speed
100 64286 100 64286 © 0 519 @ —-ieeres -ere-zes e- 518k

f5student@xjumpbox:~$

_static/class2/pbd_test1.png
F5student@xjumpbox:~$ curl -k -H "X-Forwarded-For: 5.16.0.1" http://hackazon.f5d|
lemo. com | grep -i ?type=

% Total % Received % Xferd Average Speed ~Time Time Time Current
Dload Upload Total Spent Left Speed
100 5823 100 5823 © 0 434k 0 -- -i--:-- 473k

<script type="text/javascript” src="/TSPD/08309ab76bab200021c3alcdb69f2aac948ac)
09904bcas02c7ddab7c8b98BC118beSbc97d9bccad? type=10"></script>
f5student@xjumpbox:~$ I

_static/class2/dig_trunc.png
f5studentexjumpbox:~$ dig f5.com @10.1.10.153 ANY +noall +comments,
;i Truncated, retrying in TCP mode

; <<>> DiG 9.10.3-P4-Ubuntu <<>> f5.com @10.1.10.153 ANY +noall +comments
;; global options: +cmd

;3 Got answer:

;i ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15365

;: flags: qr rd ra; QUERY: 1, ANSWER: 12, AUTHORITY: 4, ADDITIONAL: 1
3 OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

_static/class2/open_DNS_resolver.gif
“Open” DNS Resolver

Request from 2.2.2.2

#
Sure! Here’s all the info you requested. After
all, I'll answer anyone who sends a request.

_static/class3/image11.png
There has been an error.

_static/class3/image12.png
The following error occured: Invalid JSON

_static/class3/image1.png
Win 7 Desktop
User/Pass: student/student
MgmtNet P: 192.168.0.10
External NetIP: 10.0.0.10

Management
192.168.0.0/24

WEB/SQL Server

External
10.0.0.0/24

Internal
10.0.1.0/24

BIG-IP VEV13.0

User/Pass: root/default, Server IP: 10.0.1.10
admin/admin
MgmtNet P: 192.168.0.245

Internal Self IP: ~ 10.0.1.5
External Self IP:

_static/class3/image10.png
(® iRules LX POST Data

Your JSON was not valid: Unexpected token r

© 1998 - 2016 F5 Networks, Inc. All rights reserved.

_static/class3/image14.png
Workspace Fles <« packagejson

4Emes 14
i]ison_parser_tue

s Caparser_ext

Binsexts

» CInode_modules
Qpsckagalsan

G- P-connents* : [

ackage. json is the standard npn (www.npnjs.org) package definition file

“For nore’ infornation please see www.npnjs.orq/doc/package. json.htnl. *

1

*description”
rivate': true,

epository”: {},

{

A custon iRulesLX extension for BIG-TP",

"6.11.12"

{

0.3
~6.1.0"

_static/class3/image15.png
iRules LX JSON Parser
Put your JSON text here:

{

"username": "userl",
"password": "password"

}

Submit

_static/class3/image13.png
(® iRules LX POST Data

The Content-Type header is: application/json

This is your JSON data:

{
"username": "userl”,
"password": "password",
"email": "nobody@fS.com",
"token": "d9b87ed4cfc950df"
}

© 1998 - 2016 F5 Networks, Inc. All rights reserved.

_static/class3/image18.png
The following error occured: Property "email" not a valid email address.

_static/class3/image19.png
Configuration: | Advanced (=

Procoo! Tcr
Protocol Profile (Cliert) p

Protocol Profile (Server) (Use Cliert Profile)
HTTR Frofle Nore

HTTP Proxy Comectprorie. | [Nore

Trac Acoskeraton Profle Nore

FIP prorie o]
RTSP Frofle o]
SocKs Profle o]
Steam profie o Al
Rutes L Prorle Nore

XML protie Nore

aTT N

_static/class3/image16.png
The following error occured: Property "email” missing from JSON.

_static/class3/image17.png
iRules LX JSON Parser

Put your JSON text here:

{
"username": "userl",
"password": "password",
"email":| "nobodyf5.com"
}

Submit

_static/class3/image21.png
(€)®100021

ILX HTTP Server

‘Welcome client "10.0.0.10". Your HTTP method is GET.

_static/class3/image2.png
(& ILX Lab 1 iRules LX Post Form

Your Name:
Your Title:

Put some random text:

Submit

© 1998 — 2016 F5 Networks, Inc. All rights reserved.

_static/class3/image20.png
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

154
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

Q9:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33

pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]
pid[16974]

00000000 :

0000001
00008002
0000003
0000004
0000005
0000006

000000701

0000008
0006009
0000004
000600b
000000«
000000d

00000060 :

000600 F
0000010
00000111
0000012
0000013
0000014

000001501

0000016
0006017
0000018
0000019
000001 al

4745
486F
0a55
696¢

: 696

3532
3031
300d
6874
2778
6361

: 2c2a

7074
5553
6570
6970
665
6976

: 6563

310d
696e
7920
474d
6368
3236

: 726F

0d0a

5420
7374
7365
661
7578
230
3031
0a41
6d6c
6874
7469
2f2a
2d4c
2c65
742d
2c20
6374
650d
7572
0249
6365
3230
540d
3a20
3222
6c3a

2f20
3a20
722d
2735
2078
2920
2046
6363
2c61
6d6c
676e
3b71
616e
6e3b
456e
6465
696F
0a55
652d
662d
3a20
3137
0249
572f
0doa
206d

4854
3130
4167
230
3836
4765
6972
6570
7670
2b78
278
3d30
6775
713d
636F
666¢
6e3a
7067
5265
ad6f
4d6f
2032
662d
2235
4361
6178

5450
230
656e
2028
5736
636D
6566
743a
6c69
6d6c
6d6c
2e38
6167
302e
6469
6174
206b
7261
7175
6469
6e2c
323a
4e6F
3931
6368
2d61

2f31
230
743a
5831
343p
672f
6778
2074
6361
2c61
3b71
0doa
653a
350d
6e67
650d
6565
6465
6573
6669
2030
3234
665
3066
652d
6765

2e31
2032
204d
313
2072
3230
235
6578
7469
7076
3d30
4163
2065
0a41
3a20
0a43
702d
2d49
7473
6564
3820
3a30
2d4d
3030
436F
3d30

0doa
300d
6f7a
204c
763a
3130
322e
742f
676e
6c69
239
6365
6e2d
6363
677a
676e
616¢
6e73
3a20
2d53
4d61
3020
6174
302d
6e74
0doa

GET./.HTTP/1.1..
Host:.10.0.0.20.
.User-Agent : .Moz
illa/5.0.(X11;.L
inux.x86_64;.rv:
52.0) .Gecko/2010
0161.Firefox/52.
0..Accept:.text/
html, application
/xhitmlexul, appli
cation/xml;q=0.9
J*/*;0=0.8. .Acce
pt-Language: .en-
US,en;q=0.5. .Acc
ept-Encoding: .gz
ip, .deflate..Con
nection:.keep-al
ive..Upgrade-Ins
ecure-Requests: .
1..If-Modified-S
ince:.Mon,.08.Ma
y.2017.22:24:00.
GHT..Tf-None-Mat
ch:.W/"59107000-
262" .Cache-Cont
rol:.max-age=0. .

