
F5 iRules Data Plane Programmability
Documentation

F5 Networks, Inc.

Feb 14, 2020

Agility 2020 Hands-on Lab Guide

F5 iRules Data Plane Programmability

F5 Networks, Inc.

2

Contents:

1 Getting Started 5
1.1 Lab Topology . 5

2 Creating and Implementing an LX iRule 7
2.1 Lab 1 - Creating and Implementing an LX iRule . 7

3 Asynchronous Programming 13
3.1 Lab 1 - Asynchronous Programming . 13

4 iRules LX Streaming 17
4.1 Lab 1 - iRules LX Streaming . 17

3

F5 iRules Data Plane Programmability Documentation

4

1
Getting Started

Please follow the instructions provided by the instructor to start your lab and access your jump host.

Note: All work for this lab can be performed via an RDP connection to the Windows jumphost, or by
selecting bigip01 and accessing the system via the TMUI web interface.

1.1 Lab Topology

The following components have been included in your lab environment:

• 1 x F5 BIG-IP VE

• 1 x Linux LAMP Webserver

• 1 x Windows Jumphost

5

F5 iRules Data Plane Programmability Documentation

6 Chapter 1. Getting Started

2
Creating and Implementing an LX iRule

In this lab we will learn how to use iRules LX with a basic example to introduce you to the concepts of iRules
LX and their configuration objects. We will have a web application that has a web form. When we submit
the form, the page will display our POST data. As part of the lab exercise, we will apply an LX iRule that
will convert the form POST data into JSON and change the Content-Type header.

The practicality of this use case could be when you have some type of legacy front end service that can
only POST data as a standard query string, but a new back end service takes data as JSON. It would be
pretty impractical to use tradition iRules to perform the translation. However, this task is trivial for iRules LX
because of the power of Node.js. We will implement an LX iRule that will accomplish this.

2.1 Lab 1 - Creating and Implementing an LX iRule

2.1.1 Test and Review the Existing Configuration

Important:

• All code snippets are stored on the Windows Server 2016 Jumphost within a folder titled ilxcode.

To start off we have a web application that has a web form that we enter some information into and submit.

1. Lets look at the web app at the URL http://10.1.20.20/ilxlab1/ (Lab 1 on bookmarks).

2. The response of the POST will show our form data and “Content-Type” header.

3. Here is the example of the web form –

7

F5 iRules Data Plane Programmability Documentation

4. Go ahead and run your own test of the web app. Observe the “Content-Type” header and POST
data values.

5. Here is an example of the response to a POST -

8 Chapter 2. Creating and Implementing an LX iRule

F5 iRules Data Plane Programmability Documentation

2.1.2 Create the LX Workspace

The first thing we need to do is create an LX Workspace.

1. On the BIG-IP, navigate over to the LX workspaces menu in the tab located at Local Traffic > iRules
> LX Workspaces.

2. Then select the create button at the top right of the table and name the workspace ilxlab1. You will
now have an empty workspace.

2.1.3 Create the Extension

Next, we create a new extension (the Node.js code that will run). The name of the extension will matter
later because we will call that from our iRules TCL code.

1. To create the extension, click the Add Extension button at the bottom of the editor, then give it the
name ilxlab1_ext.

2. The various files of the extension will show up. Select the index.js file and you should see a template
of example code in the editor window. Normally you could use this example code as a starting point,
but in our case we should delete all the example code from the window.

3. In the Atom editor, locate the file named ilxlab1.js within the ilxcode folder and double click it which
should open it in a text editor.

4. Copy and paste this into the index.js file on our BIG-IP.

5. Then you will need to save the changes to this file with the Save File button at the bottom of the editor
window.

2.1.4 Create the TCL iRule

Next, we need to create the TCL iRule that will call our Node.js code.

1. Click the button Add iRule at the bottom of the editor window

2. Name the iRule json_post and don’t check the box to include example code (we don’t need the
example code for this lab).

3. In the Atom editor, locate the file named within the ilxcode folder called ilxlab1.tcl.

4. Copy and paste the contents into the json_post iRule file.

5. Then you will need to save the changes to this file with the Save File button at the bottom of the editor
window.

2.1.5 Create the LX Plugin

1. Now that we have our code in a workspace, you will need to navigate over to the LX Plugins menu in
the tab located at Local Traffic > iRules > LX Plugins

2. Click the Create button, name the plugin ilxlab1_pl

3. Select the ilxlab1 workspace and click Finished. This makes the Node.js code active.

2.1. Lab 1 - Creating and Implementing an LX iRule 9

F5 iRules Data Plane Programmability Documentation

2.1.6 Apply the LX iRule to the Virtual Server

Now that we have our Node.js code running, we can put it to use. In order to use the code from the plugin
we must assign the TCL iRule to a virtual server.

1. Just so we can be familiar with it (but it is not required), we will look for the TCL iRule in the Local
Traffic > iRules > iRules List menu.

2. You will find the iRule that we created in the workspace located there with a Partition/Path that has
the same name as our plugin.

3. You wont be able to make changes from here. This is the same behavior as an iApp with strict updates
enabled.

4. Now navigate over to our virtual server list, click the Edit button (under the resources column) for the
virtual ilxlab1_vs and select the Manage button for iRules.

5. If you scroll to the bottom of the available iRules list, you should see the iRule from our plugin.

6. Move this iRule to the over to the enabled section and click finished.

2.1.7 Testing the LX iRule

1. Now let’s navigate to the second tab on the browser with the web page of our app.

2. Go back to the web form and submit the information again. You will see now that the data has been
converted to JSON and the Content-Type header has been changed.

10 Chapter 2. Creating and Implementing an LX iRule

F5 iRules Data Plane Programmability Documentation

As you can see, with iRules LX we can implement solutions with very few lines of code. If we wanted to
accomplish the same goal in TCL alone, it would most likely take several hundred lines of code.

2.1.8 Workspace Package Management

Lastly, we will show package management for LX workspaces. While it is fairly simple to move TCL iRules
from a dev/test environment to production because it is a single file, iRules LX can have an almost unlimited
number of files depending on how many NPM modules a solution needs. Therefore, workspaces have
been given the ability to export and import packages as a tgz file to have a more convenient method of
transporting iRules LX code. In this exercise, we will export our package and import it back into the same
device (but normally import would happen on a separate BIG-IP).

Export/Import a Workspace

1. Go to the LX Workspaces list, check the box of our ilxlab1 workspace and click the Export button
below the list. This will save the file to the user’s Downloads folder.

2. Now click the Import button on the top right hand corner of the workspace list.

3. On the next window give the imported workspace the name of ilxlab1_restore

4. select the option Archive File, and use the Choose File button to find the tgz file in the user’s Down-
loads folder.

5. When you click the Import button you will be taken back to the workspace list and you should see the
imported workspace now. Feel free to navigate into the imported workspace.

You have concluded lab exercise #1

2.1. Lab 1 - Creating and Implementing an LX iRule 11

F5 iRules Data Plane Programmability Documentation

12 Chapter 2. Creating and Implementing an LX iRule

3
Asynchronous Programming

In this lab we will demonstrate the concept of asynchronous programing with a LX iRule that will do queries
to a MySQL database. For this exercise, we will be using the file ilxlab3_steps.js to cut and paste
code into the BIG-IP.

3.1 Lab 1 - Asynchronous Programming

3.1.1 Test and Review the Existing Configuration

In this lab we will be working with the virtual server (10.1.20.22) & workspace named ilxlab3. The plugin
and TCL iRule are already assigned to the virtual server. To start off we have a web application that displays
a list of users in a database. This web app is configured on our BIG-IP at the URL http://10.1.20.22/.

3.1.2 SQL Database Lookup

In this lab we are simply going to view some log statements into the Node.js and look at the order they
appear in the log file.

1. First we will review the sql query method in our extension code highlighted below:

1 // Add a method
2 ilx.addMethod('get_users', function(req, res) {
3 // Perform the query from pool
4 sqlPool.query(
5 'SELECT id, name, grp FROM users_db.users ORDER BY id;',
6 function(err, rows) {
7 if (err) {
8 // MySQL query failed for some reason, send a 2 back to TCK
9 console.error('Error with query: ', err.message);

10 return res.reply(2);
11 }
12

13 // Check array length from sql
14 if (rows.length)
15 res.reply([0, rows]);
16 else

(continues on next page)

13

http://10.1.20.22/

F5 iRules Data Plane Programmability Documentation

(continued from previous page)

17 res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching
→˓records

18 }
19);
20 });

You will notice that the function has 2 arguments, the first being the text of the actual query. Because
this method is asynchronous, the second argument is the callback function that will get executed when
the query answer is received by Node.js.

2. To demonstrate asynchronous behavior, we will put logging statements before and after the query
method as such:

Code Step 1

1 // Add a method
2 ilx.addMethod('get_users', function(req, res) {
3 // Perform the query from pool
4 console.log('Starting SQL query');
5 sqlPool.query(
6 'SELECT id, name, grp FROM users_db.users ORDER BY id;',
7 function(err, rows) {
8 if (err) {
9 // MySQL query failed for some reason, send a 2 back to TCK

10 console.error('Error with query: ', err.message);
11 return res.reply(2);
12 }
13 console.log('There are', rows.length,'records in the DB.');
14

15 // Check array length from sql
16 if (rows.length)
17 res.reply([0, rows]);
18 else
19 res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching

→˓records
20 }
21);
22 console.log('SQL query finished.');
23 });

Make sure to use the TMSH plugin restart command after you reload the workspace.

1. Now tail the log contents of the log file with the following BASH command and then refresh the ilxlab3
web page:

tail -f /var/log/ilx/Common.ilxlab3_pl.mysql

2. What do you notice about the order of the log statements?

3. Now let’s make the following changes to the node.js as seen below.

Code Step 2

1 // Add a method
2 ilx.addMethod('get_users', function(req, res) {
3 // Perform the query from pool
4 console.log('Starting SQL query');
5 sqlPool.query(
6 'SELECT id, name, grp FROM users_db.users ORDER BY id;',

(continues on next page)

14 Chapter 3. Asynchronous Programming

F5 iRules Data Plane Programmability Documentation

(continued from previous page)

7 function(err, rows) {
8 if (err) {
9 // MySQL query failed for some reason, send a 2 back to TCK

10 console.error('Error with query: ', err.message);
11 return res.reply(2);
12 }
13 console.log('There are', rows.length,'records in the DB.');
14

15 // Check array length from sql
16 if (rows.length)
17 res.reply([0, rows]);
18 else
19 res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching

→˓records
20 console.log('SQL query is really finished.');
21 }
22);
23 console.log('Function call is finished.');
24 });

1. Use the TMSH plugin restart command after you reload the workspace. Now tail the log contents of
the log file again and then refresh the ilxlab3 web page. You will see that they are in the right order.
The callback function is executed much later because I/O responses take much longer.

But you might ask, how much later is the callback function executing?

2. To answer that question, lets add some more code:

Code Step 3

1 // Add a method
2 ilx.addMethod('get_users', function(req, res) {
3 // Perform the query from pool
4 console.log('Starting SQL query');
5 var start = Date.now();
6 sqlPool.query(
7 'SELECT id, name, grp FROM users_db.users ORDER BY id;',
8 function(err, rows) {
9 if (err) {

10 // MySQL query failed for some reason, send a 2 back to TCK
11 console.error('Error with query: ', err.message);
12 return res.reply(2);
13 }
14 console.log('There are', rows.length,'records in the DB.');
15

16 // Check array length from sql
17 if (rows.length)
18 res.reply([0, rows]);
19 else
20 res.reply(1); // if 0 return 1 to the Tcl iRule to show no matching

→˓records
21 console.log('SQL query is really finished, time:', Date.now() - start,

→˓'msec');
22 }
23);
24

25 console.log('Function call is finished.');
26 });

3.1. Lab 1 - Asynchronous Programming 15

F5 iRules Data Plane Programmability Documentation

1. Use the TMSH plugin restart command after you reload the workspace. Now tail the log contents
of the log file again and then refresh the ilxlab3 web page. Most likely, you are seeing that the time
logged is in the order of tens of milliseconds. As you saw from the I/O time table in the presentation,
this is an eternity compared to reads from local memory.

16 Chapter 3. Asynchronous Programming

4
iRules LX Streaming

In this lab exercise, you will learn how to create LX plugins that can be use in streaming or HTTP mode. In
the interest of time, we will taking existing workspaces then and take the code to a full working configuration
on a virtual server. We will be using the virtual server ilxlab4_stream_vs (10.0.0.23).

4.1 Lab 1 - iRules LX Streaming

4.1.1 Creating and Implementing a Streaming LX Plugin

In this lab we will be loading an LX plugin in streaming mode. To keep the lab simple, we will only be loading
a plugin that will print the client data to hexdump format in the log files.

Review the LX Workspace and Install NPM package

The first thing we need to do is view the LX Workspace. On the desktop, navigate over to the LX workspaces
menu in the tab located at Local Traffic > iRules > LX Workspaces. Then click the workspace named
ilxlab4_stream. You should see an extension named hexdump, then click on the index.js file. Also, we
should note that you will not see a TCL rule in the workspace.

Just for reference, here is the Node.js code below:

1 'use strict';
2 // Hexdump all client data to stdout on L4 virtual server
3 var f5 = require('f5-nodejs');
4 var plugin = new f5.ILXPlugin();
5 var hexy = require('hexy');
6

7 // Register a listener for the client ILXPlugin "connect" event
8 plugin.on('connect', function(flow) {
9 // Register a listener for the ILXStream "data" event

10 flow.client.on('data', function (data) {
11 console.log(hexy.hexy(data)); //Print the client data to STDOUT
12 flow.server.write(data); //Pass the client data to the server stream
13 })
14

15 // Create event listeners for error events

(continues on next page)

17

F5 iRules Data Plane Programmability Documentation

(continued from previous page)

16 flow.client.on('error', function(errorText) {
17 console.log('client error event: ' + errorText);
18 });
19 flow.server.on('error', function(errorText) {
20 console.log('server error event: ' + errorText);
21 });
22 flow.on('error', function(errorText) {
23 console.log('flow error event: ' + errorText);
24 });
25 });
26

27 // Tell TMM not to send data from server to Node
28 var options = new f5.ILXPluginOptions();
29 options.handleServerData = false;
30 plugin.start(options); //Start the plugin in streaming mode

As you can see from the code above we are loading the hexy package for doing the hexdumps of the buffer
chunk. Therefore, we need to install this package into the workspace.

1. To do this you will need to SSH to the BIG-IP and execute the following commands from the BASH
prompt:

cd /var/ilx/workspaces/Common/ilxlab4_stream/extensions/hexdump/
npm install --save hexy

Create the LX Plugin

1. With our code already in a workspace, you will need to navigate over to the LX Plugins menu in
the tab located at Local Traffic > iRules > LX Plugins. Click the Create button, name the plugin
ilxlab4_stream_pl, select the ilxlab4_stream workspace and click finish to save the changes.

2. We still need to configure a few more things so once you are back to the LX Plugin list, click on the
ilxlab4_stream_pl plugin and then click on the hexdump extension. Change the following settings:

Setting New Value Reason
Concurrency Mode Single Keep logs for all connections in a single file.
iRules LX Logging Checked Will make extension send logs to dedicated file.

Create the iRules LX Profile

Since iRules LX Streaming does not require the use of TCL iRules, we need a method to associate an LX
Plugin to a virtual server. That is done with an iRules LX profile.

1. To create a new iRules LX profile, navigate to the menu Local Traffic > Profiles > Other > iRules LX
and click the + sign.

2. Name the new profile ilxlab4_stream_profile, select the ilxlab4_stream_pl LX Plugin and click finish
to save the changes.

Assign the iRules LX Profile to Virtual Servers

Now we need to attach our profile to a virtual server.

18 Chapter 4. iRules LX Streaming

F5 iRules Data Plane Programmability Documentation

1. Go into the virtual server ilxlab4_stream_vs main configuration “properties” window (not the re-
sources tab), then expand the Configuration menu to the advanced setting and you will see the iRules
LX Profile setting as shown here:

2. Select the ilxlab4_stream _profile then click update at the bottom to save the changes.

Test the ILX Streaming Plugin

Now we should be able to see the hexdumps in the log file. First, in an SSH session with the BIG-IP, tail the
log file of the plugin with the following command:

tail -f /var/log/ilx/Common/ilxlab4_stream_pl.hexdump

1. Then refresh the page in the browser (URL http://10.0.0.23/ilxlab4stream) and you should see output
like this in the SSH terminal:

4.1. Lab 1 - iRules LX Streaming 19

http://10.0.0.23/ilxlab4stream

F5 iRules Data Plane Programmability Documentation

4.1.2 Create and Implement an HTTP server LX Plugin

In this lab exercise, we will use the LX plugin as an HTTP server. The virtual server that we will use this
LX Plugin is the ilxlab4_http_vs (10.0.0.24) virtual server which does not have a pool attached to it. This
VS does not have an HTTP profile associated with it as use of the iRules LX HTTP server requires this
configuration.

Review the LX Workspace

1. Go to the LX workspace named ilxlab4_http, click on the extension folder named http_server and
click on the index.js file. You should see code that looks like this:

'use strict';
// Use iRules LX as simple HTTP server
var f5 = require('f5-nodejs');

// Create the HTTP request callback function
function httpRequestCallback(req, res) {
var msg = '<html><body><h1>ILX HTTP Server</h1>';
msg += '<p>Welcome client "' + req.client.remoteAddress + '". ';
msg += 'Your HTTP method is ' + req.method + '.</p>';
msg += '</body></html>';
// Set HTTP respond, send reply and close connection.
res.writeHead(200, {'Content-Type': 'text/html'});
res.end(msg);

}

var plugin = new f5.ILXPlugin();
plugin.startHttpServer(httpRequestCallback);

20 Chapter 4. iRules LX Streaming

F5 iRules Data Plane Programmability Documentation

Create the LX Plugin, Profile and Attach to Virtual Server

With our code already in a workspace, all we need to do is create our LX Plugin and iRules LX profile, and
attach the profile to the virtual server.

1. Name your LX Plugin ilxlab4_http_pl. Create the iRules LX profile with the name of
ilxlab4_http_profile and attach it to the ilxlab4_http_vs virtual server.

Test the ILX HTTP Plugin

1. In your web browser’s 2nd tab type in the URL http://10.0.0.24. You should see a web page like this –

4.1. Lab 1 - iRules LX Streaming 21

http://10.0.0.24

	Getting Started
	Lab Topology

	Creating and Implementing an LX iRule
	Lab 1 - Creating and Implementing an LX iRule

	Asynchronous Programming
	Lab 1 - Asynchronous Programming

	iRules LX Streaming
	Lab 1 - iRules LX Streaming

